Acoustiblok Soundproofing Blog Articles

Fracking: A Controversial and Noisy Energy Process: Part 1 of 2

Posted by Thomas Wiseman on Dec 18, 2013 3:01:00 PM

Fracking Blog Series DUOTONE Header This is a three part blog about the issue of high volume hydraulic fracturing, known to many as "hydrofracking" or "fracking," and noise issues that surround it.  

PART I:  The Controversy

According to the Wall Stree Journal, more than 15 million Americans now live within one mile of a fracking well. America is in the midst of an energy boom. It's expected to continue for decades and natural gas is expected to replace coal as the largest source of U.S. electricity by 2035, the Department of Energy forecasts. This energy bonanza is largely due to the combined use of horizontal drilling and fracking.

New oil and gas wells have turned millions of people into the petroleum industry’s neighbors.While many welcome the oil and gas companies who come bearing checks for temporarily leasing their land, others do not. Many people think the operation is noisy, disruptive and risky to human health and the environment despite the financial benefits.

Fracking History

Fracking technology has existed since 1947, but it mushroomed in the late 1980s when companies began to combine it with horizontal drilling to magnify productivity. In the last 15 years, a frenzy of drilling has taken place in the Western states – involving tens of thousands of individual wells (for example, 30,000 in the State of Colorado alone). This has spread into the Midwest and other areas as well. Millions of acres of land have been leased in 32 states by companies that are eager to get in on the “gas bonanza.” There are more than 500,000 active natural gas wells in the U.S. Fracking is also being done in other countries such as Germany, Netherlands, the United Kingdom and others.

Fracking Process 

fracking how it works 2 D drawingTo get natural gas or oil through hydraulic fracturing, companies:

-  Clear a well site, drill a bore hole, and drive a drill bit thousands of feet through the earth to reach layers of shale rock. 

-  Once they reach the strata of shale rock, they rotate the drill bit by 90 degrees and bore a horizontal cavity laterally through the shale seam to access a longer stretch of the deposit— from 1,000 feet to more than 10,000 feet. 

-  From the well head, they insert explosive charges down the bore hole and into the horizontal opening, and then set them off to perforate the well pipe and burst fissures in the rock. 

-  The drillers then pump millions of gallons of highly pressurized water, sand, ceramic beads, and chemical slurry into the hole to expand the fissures and hold them open. 

  -  As natural gas or oil begins to flow upward to the wellhead on the surface, the sand and beads prevent the fissures from closing. 

  -  Wastewater and drilling fluids that rise to the surface with the gas or oil are stored in ponds or tanks, or trucked away in heavy tank trucks.

The Issues For and Against

The following are some often used views from opponents and proponents about fracking:

Detractors Say:

Supporters and Industry Say:

  • Non-stop truck, heavy machinery, and compressor station noise.
  • The noise is non-stop, 24-hours a day, 7 days per week for about a month.
  • There's more the companies can do to reduce the noise.
  • The wells are often located close to neighborhoods and schools.
  • The chemicals used hurt the environment and are a danger to human health.
  • The drilling is causing earthquakes and making the earth's rock core unstable.
  • The chemicals they use can cause cancer.
  • The process contaminates the local potable water supply. Some people's water can be lit on fire even.
  • Kills animals and disrupts their local habitat. 
  • The process "rapes" the earth, is an invasive process.
  • It degrades the environment.
  • The noise is temporary for one month per well. More steps are being taken to mitigate noise at well sites.
  • The well sites are temporary and not permanent.
  • It's a safe process. The process has been made safer over the decades of doing it.
  • It gives America a chance to be energy self-sufficient for the next 118 years 
  • People don't have "correct" and accurate information about it.
  • Activists use powerful misleading soundbytes to sway public opinion.
  • It creates jobs and the growing industry will put more people to work.
  • It's a clean energy source that is abundant. 

The natural gas contained in the shale formations represents a huge storehouse of America's cleanest fossil fuel. The Potential Gas Committee, a non-profit group of natural gas experts, forecasts that this resource base contains 1,836 Tcf of gas. This, plus the proven reserves (238 Tcf ) identified by the US Department of Energy in 2007, means that the U.S. has enough natural gas to last at current rates of use for 118 years. 

Some aren’t buying into the fracking hype however and think the risks are too high. Attacks on fracking come from environmental, political, and economical sides. Movies such as Gasland, Gasland2, Promised Land, Down Deep and Unearthed have even brought each side’s issues to the big screen and social media. Polarized by divided allegiances to politics, parties, and popular opinion, many people are left wondering who to trust and what to believe. 


Noise issues associated with fracking.















Tags: environmental noise, hydrofracking noise, fracking noise, city noise laws, drilling noise, compressor noise, industrial noise, Noise pollution, noise barrier

Avoid Costly Fines: Mitigate Home or Business Generator Noise with Soundproofing Materials

Posted by Thomas Wiseman on Apr 18, 2013 1:30:00 PM

generator noise, soundproofing, Acoustiblok, noisy generators, noise pollutionUsing sound absorbing viscoelastic polymer material on the inside walls of generator enclosures and surrounding your noisy generator with an acoustical soundproofing barrier will significantly quiet noise to legally acceptable and comfortable levels. Most generators are noisy and operate above acceptable community noise levels without soundproofing. They can disturb neighbors and passers-by and can disrupt normal activities going on in nearby homes and inside your business if not controlled.

Most cities and communities now have noise/nuisance ordinances and are increasingly levying fines upwards of $500 per offense if your generator is louder than 65/55 (daytime/nightime) decibels when measured "at the property boundary." In many areas, second offenses can range from $500 - $1,000 "per day" as every day counts as a separate violation. If you have a noisy generator at your home or business, the risk of getting these unpredictable fines outweighs the cost and time of installing proper sound abatement systems.

Normal everyday conversation generally occurs at approximately 60 decibels on a sound meter which is significantly less than the sound decibel levels that many generators put out. This can make even every day conversation more difficult if you are around a noisy generator. High levels of noise are also known to negatively impact productivity, moods and anxiety levels.  

Reciprocating engine-powered generators, used to make electricity on a temporary basis, produce a good deal of noise and vibration. During a temporary loss of electrical power, generators help keep essential home appliances running, keep businesses operational, and provide electricity in places like the outdoors and in recreational vehicles.

Whether these generators run continuously as part of a primary power source or occasionally in standby circumstances during emergencies or special needs situations, their noise levels usually need to be reduced to comply with local, state and federal noise or nuisance laws and ordinances in place to address noises described as "excessive, unreasonable, or repetitive in terms of volume so as to disturb the peace, quiet and comfort, and be offensive to the reasonable person of normal auditory sensitivity residing in or occupying a residential area."

Basic Types of Generators

types of generators









 Typical Residential and Non-Residential Sounds Levels in Many Communities

In many communities in North America, Europe and even other parts of the world, themaximum allowable sound levels, “measured at the nearest receiving property line,” within a similar range of the following:

Residential receiving properties (mixed-use zones are considered residential)

• 65 dBA during daytime hours for 

• 55 dBA during nighttime hours

Nonresidential receiving property

• 67 dBA during daytime hours
• 62 dBA during nighttime hours

Click here to read specifics about a common noise ordinance:


Sources of generator set noise

An engine-generator is the combination of an electrical generator and an engine mounted together to form a single piece of equipment. This combination is also called an engine-generator set or a “gen-set.” In many contexts, the engine is taken for granted and the combined unit is simply called a generator.

Like any motor, a generator motor creates a lot of heat and needs a cooling system to prevent overheating. Standby generators can be either air-cooled or liquid-cooled. The major difference is that air-cooled systems are louder and not quite as effective. Liquid cooled systems are quieter and more dependable – and also more expensive to purchase and to maintain.

The decibel (often listed as dba) rating on a generator, is a number that is given that explains the noise level generated by the engine running. Some noisy generators can reach sound levels ranging from 80-100-plus decibels, which at 100 plus decibels translates to the noise of a jack hammer at 10 meters (32.8 feet); 110 decibels is the noise equivalent of a plane taking off at a 10 meters; 115 decibels translates to a jet’s screeching whistle at 10 meters, and is also the threshold of noise-induced pain. Sustained noise levels above this can cause hearing damage in short a short amount of time. Sustained noise at 100 dB can cause long term health problems. A higher quality and less noisy generator is going to be in the 70’s decibel rating while a really good generator will be in the 60’s decibels range.  

generator noise, soundproofing, Acoustiblok, noisy generators, noise pollutionAccording to a Cummings White Paper by Senior Acoustics Specialist Dennis Aaberg, generator set (residential and commercial generators) noise is produced by six major sources:

• Engine noise – This is mainly caused by mechanical and combustion forces and typically ranges from 100 dB(A) to 121 dB(A), measured at one meter, depending on the size of the engine.

• Cooling fan noise – This results from the sound of air being moved at high speed across the engine and through the radiator. Its level ranges from 100 dB(A) to 105 (A) dB at one meter.

• Alternator noise – This is caused by cooling air and brush friction and ranges from approximately 80 dB(A) to 90 dB(A) at one meter.

• Induction noise – This is caused by fluctuations in current in the alternator windings that give rise to mechanical noise that ranges from 80 dB(A) to 90 dB(A) at one meter.

• Engine exhaust – Without an exhaust silencer, this ranges from 120 dB(A) to 130 dB(A) or more and is usually reduced by a minimum of 15 dB(A) with a standard silencer.

• Structural/mechanical noise – This is caused by mechanical vibration of various structural parts and components that is radiated as sound.

Noise from “portable” generators comes primarily from two sources, the engine block and the exhaust system. With an air cooled engine there is little you can do about blocking noise. Some engines can have a larger muffler attached or make other changes to the exhaust system. Merely mounting exhaust pipe vertically will noticeably reduce noise.

Reducing Noise “Inside” the Generator Enclosure

With the growth of standby, prime and peaking power installations in densely populated areas, it’s become important to focus attention on understanding how generator noise is propagated and controlled. 

Typically, there are two main methods for controlling the airborne noise in a power generator:

Blocking airborne noise via a weighted barrier 

Absorbing airborne noise via acoustical absorbing insulation.

Aaberg’s white paper expands on this claim. It recommends that standby generator enclosures incorporate the following types of materials for best results and often with cost and performance improvements as compared to more traditional solutions:

Flexible non-lead barriers (like Acoustiblok) in weights ranging from 1/4" lbs./ft2 to 2 lbs./ft2

•  Faced acoustical foams in thicknesses ranging from 1/4" to 2" and with numerous facings, including reflective and reinforced facings 

Decoupled barrier composites and barrier/absorber composites in a range of barrier weights, decoupler thicknesses and absorption layer thicknesses faced with numerous films

Damping composites comprising a damping layer to manage structureborne vibration

Combined with acoustical foam layers to absorb airborne noise. 

generator enclosures, generator noise, soundproofing, Acoustiblok, noisy generators, noise pollutionSignificant noise control can be achieved by lining the generator’s sheet metal enclosure with a weighted barrier, or a decoupled weighted barrier (composite of barrier over decoupling foam) to help block noise. Ideally, at least 90 percent of the enclosure should be lined. For optimal effect the enclosure openings must be minimized. 

Absorption reduces airborne noise due to mechanical sound energy by converting it into low grade heat energy. As air is pushed into the absorbing material by the sound pressure wave, viscous forces dissipate the mechanical sound energy as heat. 

Most power generation equipment requires several openings in the metal enclosure – for air intake, exhaust and heat release. These openings are generally detrimental to the performance of barriers and decoupled barriers as they can allow noise to escape unhindered. By incorporating acoustical absorbers as a lining for louvers or by creating a path for airflow, noise can be absorbed before it escapes the enclosure.

In recent years, a wide range of elastomer innovations, like Acoustiblok, have been created that can be utilized in designing next generation gen-set enclosures. These materials must meet multiple design objectives including noise frequencies, operating temperature range and operating environment including thermal management, contaminant resistance and maintenance considerations.

generator enclosures, generator noise, soundproofing, Acoustiblok, noisy generators, noise pollutionReducing Noise “Outside” the Generator

In a residential setting, the simplest type of noise control for generators or other gas or propane-powered engines is a noise barrier placed around it. Outdoor sound curtains or sound curtain noise barrier walls are an effective method of reducing noise generated by equipment, pumps, generators or other processes that are outside and are exposed to the elements.

It is important to take into account the source height of the generator, which can be fairly high, and to consider the height of the receiver if the impacted site has multiple floors.To be effective, a barrier wall must at least block the line-of-sight from the source to the receiver.  

Sound barriers will make a substantial difference in the noise exposure levels from generators if the proper materials are used. They can reduce the sound by about 12-15 decibels, which is significant because a 10 decibel decrease in sound results in half the sound heard to the human ear. The more distance between the generator and your house or building, the better. Not all materials will work. It is important to do your research.

There are other soundproofing product solutions such as sound panels. Some soundproofing companies, like Acoustiblok, Inc. manufacture all-weather sound panels that are different from other conventional acoustical sound panels. In addition to being able to stand up to the most extreme environments, they not only absorb virtually all sound but they also contain a layer of noise absorbing viscoelastic material which provides exceptional noise blockage.

The sound absorbency of the panels brings down substantially the acoustical energy around the generator and by eliminating all sound reflections in the area, while the viscoelastic material in the panel allows it to also be an excellent sound barrier. 

With increasing focus on noise in our communities, it's important to take a proactive approach to solving your generator noise issues by using lab tested and proven acoustical soundproofing materials. 

READ MORE: Related Information 

Acoustiblok quiets generators and noisy motors


United States Noise Pollution and Abatement Act (Noise Control Act)


Soundproofing products

Acoustiblok Products

Tags: noise laws, noise from generators, noisy generator, nuisance laws, residential generator noise, quieting generators, noise fines, city noise laws, commercial generator noise, community noise, generators, soundproofing, Noise pollution, generator noise